Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024520180270030219
Journal of the Environmental Sciences
2018 Volume.27 No. 3 p.219 ~ p.225
Improvement of Gas Dissolution Rate using Air Atomizing Nozzle
Kim Dong-Seog

Park Young-Seek
Abstract
This study was conducted to investigate the possibility of utilizing various types of nozzles and gas-liquid mixers to increase the dissolution rate of plasma gas containing ozone generated in a dielectric barrier plasma reactor. After selecting the air atomizing nozzle with the highest gas dissolution rate among the 13 types of test equipment, we investigated the influence of the operating factors on the air atomizing nozzle to determine the optimal plasma gas dissolution method. The gas dissolution rate was measured by a simple and indirect method, specifically, the measurement of KLa instead of direct measurement of ozone concentration, which requires a longer analysis time. The results showed that the KLa value of the simple mix of air and water was 0.372 min-1, Which is 1.44 times higher than that (0.258 min-1) of gas emitted from a normal diffuser. Among the nozzles of the same type, the KLa value was highest for the nozzle having the smallest orifice diameter. Among the 13 types of devices tested, the nozzle with highest KLa value was the M22M nozzle, which is a gas-liquid spray nozzle. The relationship between water circulation flow rate and KLa value in the experimental range was linear. The air supply flow rate and KLa value showed a parabolic-type correlation, while the optimum air supply flow rate for the water circulation flow rate of 1.8 L / min is 1.38 times.
KEYWORD
Plasma gas, Air atomizing nozzle, Ozone dissolution, KLa
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)